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EFFICIENT ALGEBRAIC MULTIGRID SOLVERS WITH
ELEMENTARY RESTRICTION AND PROLONGATION

R. WEBSTER*
Roadside, Harpsdale, Halkirk, Caithness, KW12 6UN, UK

SUMMARY

An algebraic multigrid (AMG) scheme is presented for the efficient solution of large systems of coupled
algebraic equations involving second-order discrete differentials. It is based on elementary (zero-order)
intergrid transfer operators but exhibits convergence rates that are independent of the system bandwidth.
Inconsistencies in the coarse-grid approximation are minimised using a global scaling approximation
which requires no explicit geometrical information. Residual components of the error spectrum that
remain poorly represented in the coarse-grid approximations are reduced by exploiting Krylof subspace
methods. The scheme represents a robust, simple and cost-effective approach to the problem of slowly
converging eigenmodes when low-order prolongation and restriction operators are used in multigrid
algorithms. The algorithm investigated here uses a generalised conjugate residual (GCR) accelerator; it
might also be described as an AMG preconditioned GCR method. It is applied to two test problems, one
based on a solution of a discrete Poisson-type equation for nodal pressures in a pipe network, the other
based on coupled solutions to the discrete Navier–Stokes equations for flows and pressures in a driven
cavity. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The solution of the very large sets of coupled algebraic equations that characterise wide-band-
width systems, can burden the most powerful computers. Indeed, such calculations are always
likely to be resource limited, since the required processing increases disproportionately with the
system bandwidth Q, and there is virtually no limit to the range of Q that can be usefully
exploited in the representation of natural systems. Efficient solvers are therefore essential.
Ideally, solver efficiency (the average number of operations per equation) should be indepen-
dent of Q. This rules out direct methods such as Gaussian-elimination (GE) and iterative
methods such as Gauss–Seidel relaxation (GS) where the efficiency scales as Qa, a=2 (GS)
and a=2d (GE) for systems of topological dimension d. Krylof-subspace and multigrid (MG)
accelerated relaxation methods scale better, but of the two, wide-bandwidth MG methods offer
the best prospect because convergence rates can be independent of Q, in which case the total
operation count for a fixed level of convergence would scale linearly with the total number of
equations to be solved, the optimum scaling.

The systems of interest can be expressed as
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Au=b, (1)

where A is the system matrix, u represents the set of unknowns and b the source vector. As a
discrete approximation of a continuum field problem, it could have been derived, e.g. by finite
element methods. As an inherently discrete system, it may represent a wide range of network
problems in applications as diverse as fluidics, electronics, mechanics, cybernetics, economics
etc. Any such system may be represented graphically as a connected nodal network, or grid,
with a one-to-one correspondence between equations and nodes of the grid, the coupling
between equations being represented by the connections between nodes. The bandwidth of the
system may be loosely defined as the ‘linear grid size’, or

Q�N1/d, (2)

for a grid of N nodes. Clearly, for problems with an explicit geometrical foundation such as
continuum fields in a discrete approximation, Q will be related to the resolving power of the
discretisation. Therefore, in this case, Q will be used for both system bandwidth and resolving
power.

The operator A may be asymmetric, but for iterative solutions it must be positive and at
least semi-definite. In the case of non-linear problems A will be a linearised approximation that
is updated repeatedly at each stage of a Picard or a Newton iteration sequence.

An iterative solution of the linear problem defined by Equation (1) begins with an initial
guess u0, and an associated residual error r0, given by

r0=b−Au0. (3)

A correction, v to u0, is sought with a view to eliminating this error. Subtracting Equation (1)
from (3) gives the equation to be solved for the correction v:

Av=A(u−u0)=r0. (4)

Approximate solutions for v are thus sought within the framework of a convergent iterative
scheme. At the nth iteration the correction equation will be

Avn=rn−1, (5)

and the solution algorithm might take the form

n=0; r0=b−Au0

while (rn\o do
n=n+1
dn=Grn−1

un=un−1+dn

rn=rn−1−Adn

The control parameter o represents the convergence tolerance level. The step dn=Grn−1

represents the approximate solution of Equation (5) using the chosen solution procedure. For
example, for relaxation procedures where matrix A is split according to A=L+D+U, where
L is the lower triangular block, D the diagonal and U the upper triangular block, then
G=D−1 for the Jacobi method, whilst G= (L+D)−1 for Gauss–Seidel relaxation. The
problem with such local relaxation methods is that dn is a poor approximation to vn. As G is
a short-range operator, the effective bandwidth of dn is small compared with that of vn. Within
any single iteration it only effectively addresses the highest-wavenumber domain of the error
spectrum, and its effectiveness decreases quadratically with the wavenumber. Convergence is
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thus bandwidth dependent, and very inefficient for broad-band, high-resolution, systems.
Multigrid methods seek to obtain a full-bandwidth approximation for vn, and thus bandwidth-
independent convergence rates. Such convergence is described as being mesh independent in
finite element applications.

The multigrid procedure begins with the usual narrow-band, high-wavenumber approxima-
tion dn, obtained by applying G to rn−1 for the reference equation set (fine grid). Corrections
at lower wavenumbers are then sought from a reduced-bandwidth (coarse grid) representation
obtained by a suitable restriction procedure. In algebraic multigrid (AMG) methods the
procedure is algebraic. Thus, if K is the restriction operator, applying it to Equation (5) will
generate a smaller equation set (coarser grid):

Ac8 c=rc, (7)

where

Ac=KAKT, (8)

and if rc is derived on the basis of the current residual error, i.e.

rc=K(rn−1−Adn), (9)

then a solution of Equation (7) provides a lower wavenumber correction, 8 c, that can be used
to improve dn by increasing its bandwidth, i.e.

dn�dn+KT8 c, (10)

where KT is the prolongation operator. Note that KT need not necessarily be the transpose of
K. Clearly, Equation (7) has the same form as Equation (5), so the procedure can be applied
recursively to generate successively smaller equation sets (coarser grids) and successively lower
wavenumber corrections. A suitable, cyclic, recursion scheme may then be used to transform
8 c into a wide-bandwidth correction, and hence dn into a full-bandwidth approximation for vn.

The simplest scheme is based on the so-called V-cycle, the restriction of residuals and the
prolongation of corrections constituting, respectively, the ‘downward’ and the ‘upward’ legs of
the cycle. Prior to each restriction, equation sets may be preconditioned with 61 applications of
a short-range relaxation operator, to smooth out the high-wavenumber errors for that grid.
Following each prolongation, 62 applications of a similar smoothing operator will also remove
those high-wavenumber errors in the correction that have been generated by the prolongation.
Such a V-cycle is commonly designated V(62, 61). Other more elaborate schemes are in general
use, such as the W-cycle and the F-cycle. The F-cycle is essentially a V-cycle with an upward
leg that is itself comprised of nested V-cycles. Following the usual convention, the notation
F(62, 61) will be used below to represent an F-cycle that employs 61 sweeps of a prerestriction
smoother and 62 sweeps of a postprolongation smoother.

Essential to the achievement of the ideal MG performance are consistent coarse-grid
approximations to the problem at each reduced scale of resolution. If there is a breakdown in
consistency at any level, then the correction assembled will not make a full-bandwidth
improvement. To ensure consistency it is important to choose the restriction and prolongation
operators, K and KT carefully. Hemker [1] has shown that the criterion due to Brandt [2] and
Hackbush [3] needs to be respected. Thus, if mr and mp are the lowest order polynomials (plus
one) that are faithfully interpolated by K and KT, and m is the order of the partial differential
equation being approximated, then

mr+mp\m, (11)
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must be satisfied for mesh independent convergence. Thus for second-order partial differential
equations (such as Poisson equations), one of the transfer operators must be at least capable
of linear interpolation. On the other hand, for first-order equations (such as Euler equations)
zero-order operators should suffice. The simplest zero-order restriction procedure is straight-
forward reduction by the addition of selected equations, and the corresponding prolongation
is direct assignment of coarse-grid nodal corrections to contributing fine-grid nodes. These are
appealingly simple procedures and especially attractive in view of their low computational cost,
both in terms of operation count and storage. Obviously, operators K and KT are implicit to
the procedures and need not be formed explicitly. If required they can be assembled by
addition of appropriate rows/columns of the unit matrix, which is just the formal definition of
an elementary matrix. For this reason reference is made here to ‘elementary AMG’ (i.e. AMG
based on elementary restriction and prolongation operators).

Many implementations of AMG solvers for second-order equations have not fully respected
condition (11). For example, in the development of the AMG method, Ruge and Stuben [4]
used matrix-dependent operators which did not strictly comply with the criterion, but they
found that the grid dependence was relatively weak. They also found that improved interpola-
tion procedures, which virtually eliminated the mesh dependence, were not cost effective for
the range of test problems tried. Other authors have used simpler low-order operators for
second-order equations. Thus the control-volume agglomeration method of Lallemand et al.
[5] and Koobus et al. [6] (a special case of AMG) uses elementary operators for restriction and
scaled elementary operators for prolongation. Lonsdale [7] and Webster [8–10] used similar
operators in AMG linear solvers for Navier–Stokes equations, and both of the latter authors
show that, despite not strictly satisfying the criterion, the convergence is not strongly mesh
dependent.

Here the linear solver introduced in References [8–10] is modified to improve its effective
bandwidth. The modifications represent simple, cost-effective, methods for improving the
performance of AMG solvers based on elementary restriction and prolongation. Attention is
initially focused on equations with discrete, symmetric, (Poisson-type) operators on a single
field variable since it is second-order difference operators that are not considered well served
by zero-order interpolation. Thereafter, attention returns to the more complex system of
coupled Navier–Stokes equations in the discrete formulation first introduced in Reference [8].

2. SOLUTION METHOD

Descriptions of the elementary AMG solvers to be modified will be found in the quoted
references, for a single field variable in Reference [7], for coupled vector and scalar field
variables in [8–10]. Only modifications to these basic schemes will be discussed here.

The motivation for retaining elementary intergrid transfer operators is their simplicity and
low computational cost. Ruge and Stuben’s work suggests that the savings can outweigh the
penalty of not strictly satisfying Equation (11), except possibly for problems of very large
bandwidth. Moreover, in the context of AMG, resorting to higher order transfer operators
could prove difficult; the algebraic coarsening may not always generate coarse grids of the
quality required for an homogeneous, isotropic higher order interpolation, in which case there
would still be inconsistencies. On the other hand, the adoption of elementary intergrid transfer
operators will certainly result in coarse-grid inconsistencies and hence slowly convergent
modes. To retain elementary operators and to have efficient reduction factors for all spectral
components obviously demands additional measures that address the problem of the slowly
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convergent modes, and of course these must not undermine the computational cost advan-
tages of the elementary operator scheme. Two approaches that go some way towards
satisfying these requirements have been investigated. The first seeks to minimise the actual
number of slowly convergent modes by exploiting some simple techniques for reducing the
degree of inconsistency in the coarse-grid approximation. The second seeks to speed up the
convergence of those remaining by exploiting well established acceleration techniques. Con-
jugate gradient accelerators have been shown to be very efficient in speeding up otherwise
weakly converging multigrid algorithms [11]. Here the effectiveness of a generalised conju-
gate residual (GCR) accelerator is investigated.

2.1. The reduction of inconsistencies in the coarse-grid approximation

Some reduction in the number of errant modes can be achieved by not pursuing coarsen-
ing to the lowest resolution. By terminating at a higher level and using an alternative solver
for the larger coarsest grid, inconsistencies associated with lower levels are avoided [8]. The
coarsest grid is chosen to be as large as possible, subject to the requirement that the
alternative solver is competitive with AMG. As direct methods (such as GE) are competi-
tive for coarse grids, a reduction, though a somewhat limited one, is possible.

The inconsistencies at higher levels must be tackled directly. Consider the following finite
element field problem as a heuristic. If the computational domain is discretised to a re-
solved length scale l, then matrix entries for a discrete, second-order, partial differential
operator, A, should scale as l−2. Therefore, if the fine grid is reduced to a lower resolu-
tion, lc, by a suitable coarsening procedure (restriction and prolongation operators R and P
respectively), then matrix entries for the coarse-grid approximation, Ac=RAP, should be
proportional to l c

−2. Elementary restriction and prolongation, R=K, P=KT, fails to sat-
isfy condition (11) and is thus unable to provide this consistency. Matrix entries for Ac=
KAKT are actually proportional to (lcl)−1. To recover consistency it is necessary to apply
a scaling factor s=l/lc at each stage of the coarsening procedure. For a one-dimensional
uniform discretisation, uniformly coarsened, the factor is easily deduced to be 0.5 [4]. For
multi-dimensional problems discretised on the basis of unstructured finite element meshes,
the required scaling is less easily deduced without recourse to computationally expensive
measures. Koobus et al. [6] proposed an empirically derived factor which is exact for
certain special cases and which should at least reduce the inconsistency in others. In the
present study, only an approximate scaling, s, the target ratio of the bandwidths of succes-
sive grids will be used, or

s= (b)1/d, (12)

where b is the reduction factor for grid coarsening and d is the topological dimension of
the fine grid. Since b is a global coarsening parameter, the approximation will be called the
global scaling approximation. Note that it involves the recursive application of s down
through the entire coarse-grid hierarchy. Matrix coefficients for grid level n will all be
reduced by a factor, b (n−1)/d, compared with those without such scaling. Note also that s

uses no explicit geometrical information, so its use is not necessarily restricted to the chosen
heuristic.

2.2. Acceleration of the slowly con6ergent modes

The basic algorithm, without an accelerator, will be referred to as algorithm A. It is
essentially the same as iterative
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Algorithm A

n=0; r0=b−Au0

while (rn\o) do
n=n+1
dn=F(62, 61)rn−1

zn=Adn

un=un−1+dn

rn=rn−1−zn

solution algorithm (6), with G replaced by the multigrid operator for elementary AMG. The
step dn=F(62, 61) rn− l, thus represents the approximate solution of Equation (5) using a single
F-cycle. Contraction operators C. and C relating successive residual and solution errors are

C. =ACA−1=I−AF(62, 61). (13)

The eigenvalues of AF(62, 61) should be highly clustered and very close to unity. Only a small
number associated with the errant modes should remain distinct, which is an ideal precondi-
tioning for a conjugate gradient accelerator. Since A is not necessarily symmetric, this would
need to be an unsymmetric conjugate gradient accelerator. Thus, in algorithm B the solver is
driven with a GCR control harness. Successive search vectors are made orthogonal (both dn

and zn) using a Gramm–Schmidt orthonormalisation and the corrections applied are scaled to
minimise residual norms with respect to the current and all previous search directions. An
additional preconditioning, C. (b−Au0), is introduced together with a restart capability, the
control parameter h being an upper limit to the number of allowed iterations before each
restart. The shorthand GCR(h) is frequently used for this type of accelerator [12]. The
disadvantage with this approach is of course the extra

Alogrithm B

while (rn]o) do
n=0; r0=C. (62, 61)(b−Au0)
while (nBh and rn\o) do
n=n+1

dn=F(62, 61)rn−1

zn=Adn

for (i=1, n−1) do
a (n, i )=�zn, zi�/�zi, zi�
zn=zn−a (n, i )zi

dn=dn−a (n, i )di

v=�rn−1, zn�/�zn, zn�
un=un−1+vdn

rn=rn−1−vzn

u0=un

storage required, which increases with the iteration count to the limit set by h. Alternatives
that may require less memory are the biconjugate gradient (BICG) algorithm [13] and the
conjugate gradient squared (CGS) algorithm [14]. However, providing the preconditioner is
effective, the number of distinct clusters of eigenvalues, say nc, should be small, and the
algorithm should converge in about nc iterations. Therefore, the storage requirements should
not be prohibitive, h5nc, and may be comparable with those for BICG and CGS. It is
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estimated that h could be as large as 2.5 times the average nodal connectivity before algorithm
B would begin to show any storage disadvantage when compared with alternative schemes
based on higher order interpolation (assuming the latter do not require an accelerator).

In the following, the improvements have been applied sequentially. Thus, in ascending order
of improvement, reference is made to algorithms A, A% and B%, where primed identifiers
indicate that the global scaling approximation has also been used.

3. NUMERICAL RESULTS

Before discussing the results for the test applications, Darcy flow in pipe networks and
Navier–Stokes flow in a square cavity, it will be helpful to specify the solution parameters
used, and to define the assessment parameters.

3.1. Solution method parameters

For Darcy flows, an F(1, 1)-cycle schedule is used with the grid hierarchy extending down
to a single equation. For Navier–Stokes flows an F(3, 1) schedule is used, the grid hierarchy
being terminated at about 20 equations. A GCR solver provides an accurate solution for this
coarse grid set. The postsmoothing is also driven with a GCR harness wherever more than one
smoother sweep is employed. Prior to prolongation, corrections are also scaled, as described in
Reference [10]. No fixed limit is placed on the number of F-cycles; unless otherwise indicated,
residuals are reduced to the level of machine accuracy.

3.2. Aspects of performance assessment

3.2.1. Con6ergence characteristics. When residual error norms are plotted logarithmically
against the iteration count, a convergence characteristic is obtained. For the convergence
characteristics shown here, residual norms have been normalised by the initial Euclidean norm.
Note that in Section 3.3 this is the norm of the residual ready for the first restriction, i.e. after
preconditioning with 61 sweeps of the Gauss–Seidel smoother. Total error reductions are thus
somewhat larger than those suggested by the figures shown, the reduction of the initial
high-wavenumber errors being effectively discounted in the assessment of performance.

3.2.2. Residual reduction factors. The slope between successive points will be used to derive
residual reduction factors for each characteristic. Where convergence characteristics cannot be
characterised adequately by a single, average, reduction factor, two selected reduction factors
are used; the maximum (i.e. the worst) reduction factor and the average reduction factor, m̄.
For a sequence of n F-cycles m̄ is defined as

m̄={r(n)2/r(0)2}1/n={P0
nm (i)}1/n, (14)

where mi, the reduction factor for the ith F-cycle, is given by

m (i)=r(i)2/r(i−1)2, (15)

where r(i ) is the residual following the ith cycle. Note that the F-cycle is used to define the
reduction factors for both algorithms A and B.

3.3. Application 1: Darcy flow in pipe networks

3.3.1. Test problems. These test problems are based on laminar pressure-driven flow in pipe
networks. Pipes are straight and sufficiently long for junction pressure losses to be ignored.
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The task is essentially the solution of the continuity equation, which takes the form of a
discrete Poisson-like equation for the nodal (pipe junction) pressures. Two well-separated
nodes in the networks are prescribed different pressures, all other nodes are free. The problem
is thus the determination of the free node pressures and hence the pipe flows for the entire
network. Two types of network have been studied:

Type 1. Uniform networks in one and two dimensions with linear nodal connectivity, x53,
and rectangular nodal connectivity, x55.

Type 2. Unstructured pipe networks within a rectangular domain with variable nodal connec-
tivity, x510.

Simple examples are illustrated in Figure 1. In both two-dimensional cases the domain is
rectangular and the two fixed nodes have been chosen to be those at diagonally opposite
corners of the network. The pressure drop is chosen to ensure laminar flow with the maximum
Reynolds number, Re, not exceeding 103.

3.3.2. Results. Examples of the convergence characteristics obtained for each solution
method when applied to type 1 problems in one-dimension are given in Figure 2 for
bandwidths spanning four orders. The broken curves are for algorithm A, elementary AMG,
without any scaling of the coarse-grid approximation. Clearly, multigrid performance breaks
down at the higher bandwidths (500 and above) with maximum reduction factors approaching
or exceeding unity. This is the grid-dependent behaviour expected for an inconsistent coarse-
grid approximation.

For this simple one-dimensional case, the coarse-grid approximation is greatly improved by
scaling alone. Convergent behaviour is then obtained for all orders of bandwidth, the chain
lines (A%) in Figure 2. Note, however, that there is still evidence of a weak bandwidth
dependence, the number of iterations required to achieve a six-order reduction in the residual
norm increasing by about one iteration for every order of magnitude increase in bandwidth.
This indicates that there is still some inconsistency which leaves a few eigenmodes slowly
convergent. The GCR(10) accelerator deals effectively with these, bringing the number of
iterations required to ten in all cases (the points linked by full lines (B%) in Figure 2).

Figure 1. Simple examples of structured and unstructured pipe networks. (a) Type 1 (x53, Q=5; five pipes, six
nodes). (b) Type 1 (x55, Q=5; 60 pipes, 36 nodes). (c) Type 2 (x58, Q=7; 91 pipes, 38 nodes).
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Figure 2. Convergence characteristics for Darcy flow in one-dimensional, type-1, networks; A (elementary AMG), A%
(elementary AMG with scaling of coarse-grid equations) and B% (GCR-accelerated AMG with scaling of coarse-grid

equations).

For multi-dimensional networks and non-uniform, unstructured, networks the global scaling
factor s is unlikely to provide such a good coarse-grid approximation. This is clearly evident
in Figure 3, which gives the convergence characteristics for two-dimensional meshes with
bandwidths of Q=130 and 219 for uniform and non-uniform cases respectively. In both cases
algorithm A% is less satisfactory, the convergence being sluggish and erratic (points joined by
the chain line, A%). For the unstructured network, reduction factors actually exceed unity at
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some points, though convergence is recovered in subsequent iterations. In contrast, the
efficiency of algorithm B% is undiminished (points joined by the full lines, B%) The GCR
accelerator has little difficulty in dealing with the slowly convergent modes; convergence is just
as good as that for the one-dimensional cases. The convergence rate is maintained down to
machine accuracy, (Figure 4). Moreover, it is not sensitive to the particular GCR(h) restart
schedule adopted, indicating that, at least for these symmetric cases, the storage requirement
can indeed be minimised if necessary by choosing small values for h without degrading the
performance significantly.

Further results for algorithms A% and B% for two-dimensional networks of both types are
summarised in Tables I, II, III and IV. These give maximum reduction factors, mean reduction
factors and the number of F-cycles required to reduce residual norms by six orders, for
bandwidths spanning Q=29–290 (uniform networks Tables I and II) and Q=32–323
(non-uniform networks Tables III and IV). They show again that without the GCR accelerator
performance degrades at large bandwidths, reduction factors straying on occasion into
divergent values. Reduction factors for the accelerated algorithm show no such behaviour.
They are consistent with the results for one-dimensional networks, showing equally efficient
convergence at the larger bandwidths and, if anything, slightly better performance for coarser
networks.

3.3.3. Bandwidth dependence and multigrid performance. It will be apparent from the
convergence characteristics of algorithm A in Figures 2 and 3 that the breakdown in multigrid
performance is not very evident in the first few F-cycles. Indeed, if the average reduction factor
for ten F-cycles is plotted against mesh bandwidth for all cases solved, it reveals roughly
constant values for bandwidths above about 100 (Figure 5; the filled circles, squares and
triangles are results for the different nodal connectivities as indicated). It might thus be
assumed that, for the first ten F-cycles, algorithm A is an effective multigrid scheme, albeit a

Figure 3. Convergence characteristics for Darcy flow in type-1 (left) and type-2 (right) networks; 17161 nodes
(structured): 16784 nodes (unstructured); A (elementary AMG); A% (elementary AMG with scaled coarse-grid

equations); B%(GCR accelerated AMG with scaled coarse-grid equations).
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Figure 4. A comparison of convergence characteristics for Darcy flow in unstructured network (Q=219; 16784
nodes); A (elementary AMG) and B% (GCR accelerated AMG, with scaling of coarse-grid equations).

Table I. Type 1 pipe network

900 4225N 17 161 84 681

Q 29 64 130 290
0.533 0.728mmax 1.34 0.860
0.363 0.390 0.486m̄ 0.474

13 14F-cycles 19 18

F(1, 1) residual reduction factors, algorithm A%.

Table II. Type 1 pipe network

900 4225 17 161 84 681N

29 64 130Q 290
0.240 0.258 0.223 0.250mmax

0.201 0.184m̄ 0.197 0.228
9 8 9 9F-cycles

F(1, 1) residual reduction factors algorithm B%.
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Table III. Type 2 pipe network

67 30516 78441541066N

Q 32 63 131 323
0.413 0.479 1.68 2.10mmax

m̄ 0.324 0.327 0.5180.519
20201212F-cycles

F(1, 1) residual reduction factors algorithm A%.

rather inefficient one when compared with algorithm B% (open circles, squares and triangles).
This would be a mistaken assumption. Algorithm B% corrections are full-bandwidth correc-
tions, in so far as the convergence of Figure 4 is fairly uniform and unlimited within the range
of machine accuracy. Corrections for Algorithm A, on the other hand, will have an incomplete
spectrum, as is evident in the non-uniform and incomplete convergences of Figure 2 at large
bandwidths. For moderate to low bandwidths, Q5100, fine-grid smoothing can compensate
to some extent, by addressing the poorly represented components of the error spectrum in the
coarse-grid approximation more effectively. Thus, in this region, algorithm A convergence
improves as bandwidth is reduced; reduction factors fall (Figure 5) and convergence is
maintained to low levels of residual error (Figure 2, Q=50). Thus, for coarse networks,
Q5100, algorithm A can be considered an effective solution scheme.

3.4. Na6ier–Stokes flow

3.4.1. The equation system. The Navier–Stokes equations describe a more complex system of
coupled vector and scalar fields. They are non-linear and must be solved iteratively, e.g. by
Picard’s method. During each non-linear iteration, a linearised approximation is assembled
using the latest iterate and it is this linearised equation set that is to be solved by AMG. The
physical complexity of the system is reflected in the system matrix which is asymmetric,
involves both first- and second-order differentials and, because it acts on (and couples) several
field variables, takes a block-structured form. The relative importance of first- and second-or-
der differentials depends on the nature of the flow as characterised by the Reynolds number,
Re. Thus for high-Re flows where inertial forces dominate, contributions to matrix coefficients
from the viscous forces can be relatively small. It might be expected, therefore, that the
coarse-grid inconsistencies associated with elementary restriction and prolongation would be

Table IV. Type 2 pipe network

16 784N 1066 4154 67 305

131 32363Q 32
0.345mmax 0.252 0.271 0.388
0.2470.2440.213m̄ 0.183

9 10 10F-cycles 8

F(1, 1) residual reduction factors algorithm B%.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 317–336 (1998)



ALGEBRAIC MULTIGRID SOLVERS 329

Figure 5. Residual reduction factors (averaged over the first ten F-cycles) versus bandwidth for A (elementary AMG)
and B% (GCR accelerated AMG with approximate scaling of the coarse-grid equations). The nodal connectivities x, are

3 and 5 for structured networks and between 7 and 10 for unstructured networks.

less troublesome for this type of application, despite its seemingly increased complexity.
Whilst this may be the case, it is important to recognise that in the discrete approximation
it is the inverse mesh Peclet number, Pe−1, where

Pe=ReQ−1, (16)

which determines the relative importance of the viscous contributions to the matrix coeffi-
cients. Since the mesh bandwidth Q must be sufficiently large to ensure an adequate
resolution of the flow, viscous contributions are always likely to be significant, especially
for low flow-regions and for regions of high spatial resolution. The performance of an
elementary AMG solver would then be compromised by an inconsistent coarsening of the
viscous terms.

To explore the effectiveness of coarse-grid scaling and GCR acceleration in dealing with
this problem, the discrete Navier–Stokes equations in the formulation introduced in Refer-
ence [8] will be considered. They are derived from a finite volume discretisation of a finite
element mesh. The mesh will here be an unstructured assembly of linear triangular elements
similar to that outlined by the connection network illustrated in Figure 1(c). Nodes are
based at the vertices of the elements and the median dual cells constitute the nodal control
volumes. If v represents the set of nodal velocities, ve a set of interpolation point velocities
within elements and p the set of nodal pressures, then enforcing the conservation laws for
both nodal control volumes and element subcontrol volumes delivers the following set of
algebraic equations:
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A(ve)v+Gp=s, (17)

Ae(ve)ve+F(ve)v+Gep=se, (18)

Dve=0, (19)

where A and G are here the nodal advection–diffusion and gradient operators respectively; Ae

and F are each part of the advection–diffusion operator for elements; Ge is the element
gradient operator; D is the nodal divergence operator, while s and se represent the momentum
source/sink arrays for the nodal control volumes and for element subcontrol volumes respec-
tively (see Reference [10] for further details).

The matrix Ae is diagonal, so the solution of Equation (18) is trivial, i.e.

ve=Ae
−1(se−Fv−Gep). (20)

Direct substitution into Equation (19) enables the following subset of coupled equations to be
formed for the nodal variables [vp]:� A(ve)

(DAe
−1F)

G
(DAe

−1Ge)
n�v

p
n

=
� s

(DAe
−1se)

n
. (21)

The solution of Equations (20) and (21) is obtained by direct iteration using a predictor–cor-
rector strategy for ve and [vp], the AMG solver providing the coupled solution of Equation (21)
for [vp].

For first-order-accurate solutions, Equation (21) is used as it stands, with the diagonal block
A assembled using a first-order (upwind) treatment of advection. For second-order-accurate
solutions, the same first-order iteration matrix is employed but a compensating defect-correc-
tion is added to the right-hand-side. In this way, non-linear iterations converge to second-or-
der-accuracy, whilst the linear solver has the benefit of an iteration matrix that has robust
convergence properties.

3.4.2. Global scaling approximation for Na6ier–Stokes systems. Elementary AMG coarsen-
ing of Equation (21) is implemented in a way which preserves the block structure [10]. As
the diagonal block operator A contains the second-order differentials associated with viscous
diffusion, inconsistencies will arise in coarsening this diagonal block. These will depend,
as discussed above, on the relative size of the diffusive contribution to the coefficients. In
keeping with the global scaling approximation, the relative strength of advection to diffu-
sion, D, will be taken to be a simple function of a representative, global, mesh Peclet number,
�Pe�,

D=�Pe�/{e�Pe�−1}, (22)

where �Pe� is an appropriate norm of mesh Peclet numbers for control cells. The scaling
factor then becomes

s=1−D(1−b1/d). (23)

Thus, for low mesh Peclet numbers, Equation (23) reduces to Equation (12) as D�1, whilst
for high mesh Peclet numbers s�1 as D�0.

Unfortunately, whilst the application of s to KAKT alone should improve consistency, it also
reduces the absolute magnitude of coefficients in the diagonal block relative to those in the
off-diagonal block, KGKT, and this can have a deleterious effect on the smoothing properties
of the coarse-grid matrices. A better conditioning is obtained if s is applied to both blocks.
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This also ensures that the numerical coupling gain in the system is conserved. In this
regard, note that the diagonal block (DAe

−1Ge) also contains multiple discrete difference
operators, and that when viscous diffusion dominates Ae, the coarsened block, K(DAe

−1Ge)
KT, should scale as l c

−1l c
2l c

−1=l0, whereas in practice it will scale as l c
−1l2l−1=l c

−1l, so
the system hardens with coarsening. The additional scaling for the velocity–pressure cou-
pling block, KGKT, compensates for this.

3.4.3. Test problems. The Navier–Stokes test problems are based on two-dimensional
fluid flow in a square cavity. Three sides of the cavity are solid, no-slip, boundaries; the
remaining side has a prescribed uniform tangential velocity that drives a circulation. The
above described finite volume discretisation of this problem gives exceptionally accurate
solutions, as described in Reference [10]. No further mention of accuracy will be made here,
except to say that the calculations are for a second-order-accurate discrete approximation
based on the defect correction method. Attention is focused on linear-solver convergence
performance.

For any given problem, the linear-solver convergence rates will depend on the particular
discrete linear approximation that is being addressed. This will obviously depend on the
discretisation (Q/Pe dependent) and on the location of that approximation on the conver-
gence path followed by the non-linear solver (iteration step and initial condition depen-
dent). Reynolds numbers, Re, and mesh resolving powers, Q, have been chosen to provide
problems with mesh Peclet numbers, Pe, lying in the three main regions of interest, Pe5 l,
Pe�1 and Pe]1 (0.1BReB103; 52BQB166). All calculations begin from a zero field
initial condition (for both flow and pressure). The particular calculations selected for pre-
sentation have been chosen, somewhat arbitrarily, from the early stages of the non-linear
iteration sequence (low step numbers). As different problems are being addressed, it is
important not to read too much into the differences between the problems, but to focus
more on the differences in performance of algorithms A, A% and B% in each case. However,
it would normally be assumed that the larger the Reynolds and Peclet numbers the more
difficult the problem; it actually becomes ill posed in the inviscid limit.

3.4.4. Results. The characteristics will be presented for reductions in residual norm to the
level of machine accuracy. For any practical Navier–Stokes solver such a tight convergence
would be unnecessary and even wasteful; the equation system is, after all, only a temporary
linear approximation. The complete convergence is presented here purely as a guide to the
quality of the correction spectrum, a uniform, convergence to machine accuracy implying a
full-bandwidth, or close to full-bandwidth, correction spectrum.

3.4.4.1. Pe�1. Consider first low values of Pe where diffusive contributions to matrix
coefficients dominate. This is the case that is closest to the previous application, except that
the solver must now provide a coupled solution for vector-flow and scalar-pressure. Figure
6 shows convergence characteristics for algorithms A, A% and B% at two levels of spatial
resolution, mesh bandwidths Q=52.5 and 166. For the coarser mesh (Figure 6(a)), all
algorithms can be considered to be efficient, in so far as convergence rates are fairly
uniform down to machine accuracy, but algorithm B% has the best convergence rate (m̄=
0.0902, m̄=0.219 and m̄=0.318 for B%, A% and A respectively). Algorithm A performs quite
well because at such low resolution, the smoother is able to reach any poorly represented
modes of the error spectrum. This is consistent with the results for the previous application
(Figure 2(a)).
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For the finer mesh however (Figure 6(b)), the inconsistencies in the coarse-grid approxi-
mation become apparent and the convergence of algorithm A is then relatively poor.
Although convergence does not break down completely, it is sluggish by multigrid stan-
dards, m̄=0.763; about 150 F-cycles would be required to reduce residuals down to ma-
chine accuracy. This is consistent with results of Section 3.3 for the single-variable field,
and it implies that at higher resolutions the multigrid performance of algorithm A will
eventually break down completely. The scaled algorithm A% is better, m̄=0.413, but with
GCR acceleration and scaling, algorithm B% maintains a much more efficient convergent
rate, m̄=0.166; no significant deterioration in this rate is to be expected at higher resolu-
tions if consistency with the single-variable results is maintained (Figure 5).

3.4.4.2. Pe�1. Next, consider mesh Peclet numbers of order 1, where contributions to
matrix coefficients from first- and second-order discrete differentials can be of comparable
magnitude. The reduction in the relative size of the second-order differential operators
might here be expected to improve the performance of algorithm A relative to A% and B%.
Comparing Figure 6(b) and Figure 7(b) shows that for Q=166 (Pe52), this would appear
to be the case. The average reduction factor for algorithm A (m=0.638) has improved
relative to those for algorithm A% and B%. Admittedly, algorithms A% and B% are somewhat
more sluggish for this case, which may be partly due to the increase in Reynolds number
and partly due to deficiencies in the global scaling approximation for this transition region
of mesh Peclet number. Nonetheless, the accelerated algorithm B% still gives an improved
rate of convergence (m=0.301) which is also significantly better than that for algorithm A%
(m=0.479).

Figure 6. Convergence characteristics for Navier–Stokes flow in a square cavity. (a) Re=0.1, Q=52.5, Pe51.9×
10−3, N=5340; (b) Re=0.1, Q=166, Pe56.0×10−4, N=59950.
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Figure 7. Convergence characteristics for Navier–Stokes flow in a square cavity. (a) Re=1.00×102; Q=52.5;
Pe51.9; N=5340; (b) Re=3.33×102; Q=166: Pe52.0; N=59950.

3.4.4.3. Pe�1. Finally, consider Peclet numbers much greater than 1 (Figure 8). Here, at
Pe�19, scaled and unscaled algorithms are indistinguishable (D�0 and s�1), advection
dominates diffusion to such an extent that coarse-grid inconsistencies should be greatly
reduced. Despite this, convergence rates for algorithm A show no improvement; they are
actually worse, m=0.367 at Q=52.5; m=0.710 at Q=166. This is because the higher Peclet
number represents a less elliptic and therefore tougher problem for multigrid and simple point
Gauss–Seidel smoothing. Algorithm B%/B, on the other hand, continues to provide very
efficient convergence, m̄=0.102 at Q=52.5 and m̄=0.275 at Q=166, slightly better than the
previous lower Reynolds number case. Thus, in this range of application, the GCR control
harness enables the solver to address the non-elliptic aspects of the solution more effectively.
Algorithm B% may then be more appropriately described as an AMG preconditioned GCR
solver. Note that the convergence rate after the first few F-cycles progressively improves with
iteration count. This is typical of well-preconditioned, minimum residual solvers.

Algorithm B% is thus effective in all three regions of Peclet number, giving significant
performance gains in all cases. At low Peclet numbers the GCR control harness forces the
solver to address the convergence of those eigenmodes poorly represented in the coarse-grid
approximation (GCR accelerated AMG), whilst at high Peclet numbers it forces the solver to
better address the essentially non-elliptic aspects problem (AMG preconditioned GCR). The
efficiency has been won, however, at the expense of the extra memory required for the GCR
accelerator. Therefore, it is important to establish whether the restarted algorithm, GCR(h),
can again be used to reduce this storage cost.

3.4.4.4. Restarted GCR acceleration. For symmetric matrix operators, the restarted accelerator
GCR(h) was found to be almost as efficient as the full GCR algorithm (e.g. Figure 4), so
memory requirements could easily be minimised by limiting h. For asymmetric matrix
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Figure 8. Convergence characteristics for Navier–Stokes flow in a square cavity. (a) Re=103; Q=52.5; Pe519.0;
N=5340; (b) Re=3.2×103; Q=166; Pe519.3; N=59950.

operators, GCR(h) is expected to be less effective, depending on the degree of asymmetry in
the advection–diffusion matrix and on the number of steps, h, that available storage capacity
will allow. In Table V, reduction factors m̄ are listed in rows for three driven-cavity problems
(Re=1, 333 and 3200) all discretised to a spatial resolving power Q=166, which corresponds
to mesh Peclet numbers of 0.006, 2.006 and 19.28 respectively. Values for the accelerated
algorithms are listed in columns from left to right in order of decreasing memory requirement.
The final column gives values for elementary AMG. The table shows that all the accelerated
algorithms give performance gains. The gains are largest (and least sensitive to the value of h)
at the lowest value of Pe, i.e. the case having the least asymmetry (consistent with the results
for the symmetric operator). For the most asymmetric case, on the other hand, the perfor-
mance gain is more sensitive to h, but even here the accelerator requiring the least storage
space, GCR(2), gives a significant improvement, and the performance difference between
GCR(5) and GCR(10) is not large. The restarted accelerator is effective in reducing storage
costs without incurring any prohibitive loss in the performance gain.

Table V. F(3, 1) residual reduction factors for Navier–Stokes flow in a square
cavity for a mesh resolving power Q=166

AB% A%Algorithm

NoneAccelerator GCR GCR(10) GCR(5) GCR(2) None

0.7200.164 0.176 0.177 0.179m̄(Pemax=0.006) 0.413
m̄(Pemax=2.00) 0.6380.4790.3700.3600.3450.310

0.7100.7100.4800.4300.3660.275m̄(Pemax=19.3)
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The scaled algorithm without acceleration, A%, requires no extra storage, but the improve-
ments gained are more modest, and are only realised at the low mesh Peclet numbers where
scaling is effective.

4. FURTHER COMMENTS ON GENERAL APPLICATION

In the general context of MG solvers, Algorithm B% may be described as a ‘black box’ solver
for large systems of second-order, discrete-difference equations having positive (at least
semi-definite) system matrices. Apart from the equation set, no other problem specific
information is required. Its application is not even restricted to problems with an underlying
geometrical foundation. For problems with mixed first- and second-order difference operators,
however, information on the relative strengths of the operators is also required, but this can
be easily accommodated within the framework of the global scaling approximation as a simple
adjustment to the global scaling parameter.

The range of mesh bandwidths covered in the one-dimensional tests above (possibly the
two-dimensional tests also) exceeds the range of three-dimensional resolution accessible with
present computing technology. Therefore, algorithm B% probably represents an efficient
multigrid solver for both existing and foreseeable limits of spatial resolution. Algorithm A is
much less effective and, as discussed, is only viable for discretisations of low bandwidth where
efficient smoothers are able to address those components of the error spectrum poorly
represented in the coarse-grid approximations. For sufficiently high-bandwidth applications
the convergence of algorithm A will break down completely.

For Navier–Stokes applications, the efficiency of algorithm B% does not appear to be
sensitive to the Pe number; efficient linear-solver convergence has been obtained for discretisa-
tions with relatively large values (Pe\20; Q\120). Dispersive truncation errors at high Pe
numbers are known to degrade the performance of non-linear solvers, to the extent that
stagnation and even divergence can occur [10]. Where an apparent convergence is obtained, the
solution can be under-diffusive and ‘contaminated’ by spatial instabilities (wiggles). Therefore,
large Pe numbers should be avoided and very large values are likely to be impractical. It is for
this reason that discretisations with Pe numbers greater than 20 have not been presented in the
above results, even though efficient linear-solver solutions have been obtained in such cases
with algorithm B%.

5. CONCLUSIONS

A simple scaling may be used to reduce inconsistencies in the coarse-grid approximations of
AMG solvers based on zero-order intergrid transfer operators. Residual components of the
error spectrum that remain poorly represented can then be reduced efficiently by conjugate-
gradient acceleration. Thus large sets of second-order, discrete-difference equations, with
positive (at least semi-definite) system matrices, may be solved iteratively at convergence rates
that are independent of the system bandwidth.

The method represents a simple, robust and cost effective approach to the problem of slowly
converging eigenmodes when low-order restriction and prolongation operators are used in
AMG algorithms. The alternative, higher order operator approach would require more
memory and a larger operation count. It could also be more difficult to implement within the
framework of AMG, as algebraic coarsening may not guarantee the grid quality required for
a higher order interpolation.
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The particular implementation presented here, algorithm B%, uses a simple global scaling
approximation together with a GCR accelerator. Alternative accelerators, such as CGS or
BICG, may be just as effective and may require less storage. The additional storage required
for GCR acceleration can be kept to a minimum by exploiting restart methods.

The algorithm has been tested on an inherently discrete problem (solution of the equations
for nodal pressures in a pipe network), and on a continuum field problem in a discrete
approximation (solution of the coupled Navier–Stokes equations for fluid velocities and
pressures in a driven cavity). It was found to be efficient in both applications.
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